

Datasheet

ENGLISH

3.6 V NiMH Rechargeable Coin Cell Battery

RS Stock number <u>525-843</u>

Description:

Rechargeable Ni-MH Button Cells are widely used for communication, Siren, Small intelligent household application, instrument and Various IC Circuit, CELL AND TYPE, Cell: Sealed Ni-MH Button Cell

Never short-circuit or reverse polarity in application

Avoid throwing cells into a fire or attempting to disassemble them.

This is not safety: use the cell without the specified working temperature range, charge and discharge with more than our specified current.

Do not mix batteries with metal objects during storage or transportation to avoid accidental short-circuit

Button type

Normal Charging, Standard charge: 0.1C for 16h

Temperature range for operation (Humidity: 65% ±20%, Max.85%)

Standard charge $0 \rightarrow +35$ °C

Rapid charge $+10 \rightarrow +35$ °C

Trickle charge $0 \rightarrow +35$ °C

Discharge -10 \rightarrow +35 °C

Temperature range for storage (Humidity: 65% ±20%, Max.85%)

Within 2 years -20 \rightarrow +35 °C, Within 6 months -20 \rightarrow +45 °C, Within a month -20 \rightarrow +50 °C,

Within a week $-20 \rightarrow +55$ °C

RS, Professionally Approved Products, gives you professional quality parts across all products categories. Our range has been testified by engineers as giving comparable quality to that of the leading brands without paying a premium price.

Specifications:

ENGLISH

80 mAh Capacity: Chemistry: NiMH Diameter: 15.5 mm Mounting Operation: Vertical 3.6 V Nominal Voltage: Normal Charging: 8 mA Trickle Charging: 2.4 - 4 mANormal Discharging: 16 mA Discharge Cut-off Voltage: 3.0 V

Operating Temperature Range: -20 - 35 °C Terminal Type: PCB Pin

Typical Application: Communication Equipment, Instruments, Integrated

Circuits, Siren

Test Conditions:

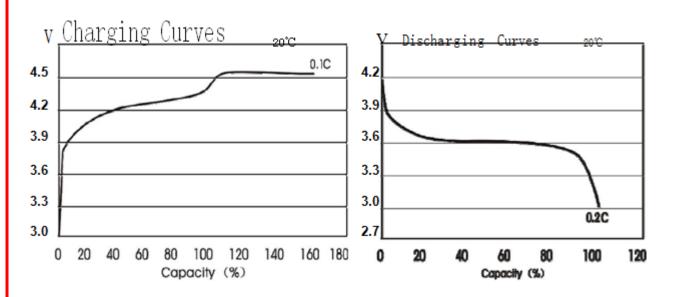
	Test Item Condition		Specification
	Condition for standard operation	The test is carried out with new batteries (within a month after delivery). Ambient conditions: $ Temperature: 20 \pm 5^{\circ}C \\ Humidity: 65 \pm 20 \% \\ Tolerances: \pm 5 \% for voltage and current $	
	(1) Normal Charge	Charging at a constant current of 0.1C (8mA) for 16 h Prior to charging, the cell shall have been discharged at a constant current of 0.2C (16 mA), down to a final voltage of 1.0 V/cell	
	(2) Open Circuit Voltage (OCV)	After 1 hour normal charge	≥ 3.75 V
	(3) Capacity	The cell shall be charged. After charging, the cell shall be stored or 1 h, then the cell shall have been discharged at a constant current of 0.2C (16 mA), down to a final voltage of 1.0 V/cell. Five cycles are permitted for this test.	≥ 300 minutes

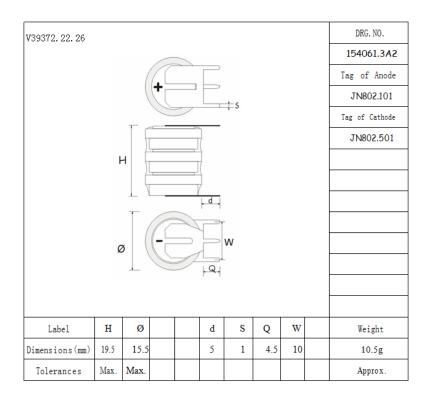
RS, Professionally Approved Products, gives you professional quality parts across all products categories. Our range has been testified by engineers as giving comparable quality to that of the leading brands without paying a premium price.

ENGLISH

(4) Overcharge	Prior to this test, the cell shall be discharged. The cell shall then be charged at a constant current of 0.1C (8 mA) for 48 h. After this charging operation, the cell shall be stored 1 h. The cell shall then be discharged at a constant current of 0.2C (16 mA) to a final voltage of 1.0 V/cell.	≥ 300 minutes
(5) Charge Retention	The charged cell is stored for 28 days. And the discharge time is measured at a normal discharge.	≥ 225 minutes

Life Expectancy:


Cycle	Charge	Rest	Discharge
number			
1	8mA x 960min	None	20mAx140 min
2-48	20mAx190 min	None	20mAx140 min
49	20mAx190 min	None	20mA to 1.0V/cell
50	8mA x 960min	1-4h	16mA to 1.0V/cell


Cycles 1 to 50 shall be repeated until the discharge duration on any 50th cycle becomes less than 3 h. At this stage, a repeat capacity measurement as specified for cycle 50 shall be carried out. The endurance test is considered complete when two such successive capacity cycles give a discharge duration of less than 3 h. [IEC61951-2: (2003) 7.4.1.1]

Charging and Discharging Curves:

ENGLISH

