

STGW80H65DFB STGWT80H65DFB

650 V, 80 A high speed trench gate field-stop IGBT

Datasheet - preliminary data

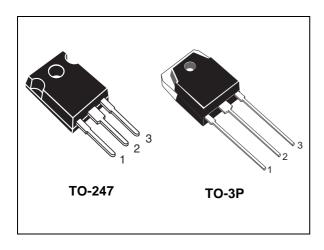
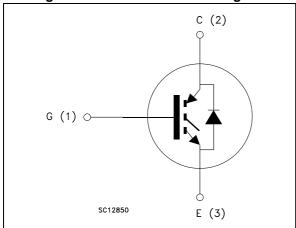



Figure 1. Internal schematic diagram

Features

- Maximum junction temperature: T_J = 175 °C
- · High speed switching series
- Minimized tail current
- Very low saturation voltage: V_{CE(sat)} = 1.65 V (typ.) @ I_C = 80 A
- Tight parameters distribution
- Safe paralleling
- Low thermal resistance
- Very fast soft recovery antiparallel diode
- Lead free package

Applications

- Photovoltaic inverters
- High frequency converter

Description

This device is an IGBT developed using an advanced proprietary trench gate and field stop structure. The device is part of the improved "H" series of IGBTs, which represent an optimum compromise between conduction and switching losses to maximize the efficiency of high frequency converters. Furthermore, a slightly positive V_{CE(sat)} temperature coefficient and very tight parameter distribution result in safer paralleling operation.

Table 1. Device summary

Order code	Marking	Package	Packaging
STGW80H65DFB	GW80H65DFB	TO-247	Tube
STGWT80H65DFB	GWT80H65DFB	TO-3P	Tube

1 Electrical ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CES}	Collector-emitter voltage (V _{GE} = 0)	650	V
I _C	Continuous collector current at T _C = 25 °C	120 ⁽¹⁾	Α
Ic	Continuous collector current at T _C = 100 °C	80	Α
I _{CP} ⁽²⁾	Pulsed collector current	240	Α
V _{GE}	Gate-emitter voltage	±20	V
I _F	Continuous forward current at T _C = 25 °C	120 ⁽¹⁾	Α
I _F	Continuous forward current at T _C = 100 °C	80	Α
I _{FP} ⁽²⁾	Pulsed forward current	240	Α
P _{TOT}	Total dissipation at T _C = 25 °C	469	W
T _{STG}	Storage temperature range	- 55 to 150	°C
T _J	Operating junction temperature	- 40 to 175	°C

^{1.} Current level is limited by bond wires

Table 3. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance junction-case IGBT	0.32	°C/W
R _{thJC}	Thermal resistance junction-case diode	0.66	°C/W
R _{thJA}	Thermal resistance junction-ambient	50	°C/W

^{2.} Pulse width limited by maximum junction temperature and turn-off within RBSOA

2 Electrical characteristics

 $T_J = 25$ °C unless otherwise specified.

Table 4. Static characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage (V _{GE} = 0)	I _C = 2 mA	650			V
		V _{GE} = 15 V, I _C = 80 A		1.65		
V _{CE(sat)} Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 80 A T _J = 125 °C		1.8		V	
	vollage	V _{GE} = 15 V, I _C = 80 A T _J = 175 °C		1.9		
		I _F = 80 A		1.9	TBD	V
V_{F}	Forward on-voltage	I _F = 80 A T _J = 125 °C		1.6		٧
		I _F = 80 A T _J = 175 °C		1.5		V
V _{GE(th)}	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 1 \text{ mA}$		6.0		V
I _{CES}	Collector cut-off current (V _{GE} = 0)	V _{CE} = 650 V			100	μΑ
I _{GES}	Gate-emitter leakage current (V _{CE} = 0)	V _{GE} = ± 20 V			250	nA

Table 5. Dynamic characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{ies}	Input capacitance		-	11	-	nF
C _{oes}	Output capacitance	$V_{CE} = 25 \text{ V, f} = 1 \text{ MHz,}$	-	TBD	-	pF
C _{res}	Reverse transfer capacitance	V _{GE} = 0	-	TBD	-	pF
Qg	Total gate charge		-	TBD	-	nC
Q _{ge}	Gate-emitter charge	$V_{CC} = 520 \text{ V, } I_{C} = 80 \text{ A,}$ $V_{GE} = 15 \text{ V, see } Figure 3$	-	TBD	-	nC
Q _{gc}	Gate-collector charge	, , , , , , , , , , , , , , , , , , ,	-	TBD	-	nC

TBD

mJ

Symbol Parameter Test conditions Min. Тур. Max. Unit Turn-on delay time **TBD** ns t_{d(on)} Current rise time **TBD** t_{r} (di/dt)_{on} Turn-on current slope **TBD** A/µs $V_{CE} = 400 \text{ V}, I_{C} = 80 \text{ A},$ Turn-off delay time **TBD** ns t_{d(off)} $R_G = 5 \Omega$, $V_{GE} = 15 V$, Current fall time TBD ns t_f see Figure 2 E_{on}⁽¹⁾ Turn-on switching losses **TBD** mJ $E_{off}^{(2)}$ Turn-off switching losses 1.1 mJ TBD Total switching losses mJ E_{ts} _ Turn-on delay time **TBD** ns $t_{d(on)}$ **TBD** t_r Current rise time ns (di/dt)_{on} **TBD** A/µs Turn-on current slope $V_{CE} = 400 \text{ V}, I_{C} = 80 \text{ A},$ Turn-off delay time TBD t_{d(off)} ns R_G = 5 Ω , V_{GE} = 15 V, T_J = 175 °C, see *Figure 2* TBD Current fall time t_f ns $E_{on}^{(1)}$ Turn-on switching losses TBD mJ $E_{off}^{(2)}$ Turn-off switching losses 1.75 mJ

Table 6. IGBT switching characteristics (inductive load)

Total switching losses

 E_{ts}

Table 7. Diode switching characteristics (inductive load)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{rr}	Reverse recovery time		-	TBD	-	ns
Q _{rr}	Reverse recovery charge		-	TBD	-	nC
I _{rrm}	Reverse recovery current	$I_F = 80 \text{ A}, V_R = 400 \text{ V}, \\ R_G = 5 \Omega, V_{GF} = 15 \text{ V},$	1	TBD	-	Α
dI _{rr/} /dt	Peak rate of fall of reverse recovery current during t _b	see Figure 2	-	TBD	1	A/µs
E _{rr}	Reverse recovery energy		-	TBD	-	μJ
t _{rr}	Reverse recovery time		-	TBD	-	ns
Q _{rr}	Reverse recovery charge		-	TBD	-	nC
I _{rrm}	Reverse recovery current	$I_F = 80 \text{ A}, V_R = 400 \text{ V},$ $R_G = 5 \Omega, V_{GF} = 15 \text{ V},$	-	TBD	-	Α
dl _{rr/} /dt	Peak rate of fall of reverse recovery current during t _b	T _J = 175 °C, see <i>Figure 2</i>	-	TBD	-	A/µs
E _{rr}	Reverse recovery energy		-	TBD	-	μJ

^{1.} Energy losses include reverse recovery of the diode.

^{2.} Turn-off losses include also the tail of the collector current.

3 Test circuits

Figure 2. Test circuit for inductive load switching

Figure 3. Gate charge test circuit

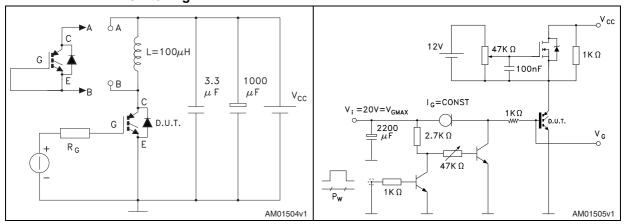
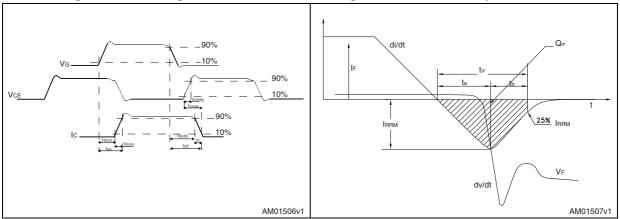



Figure 4. Switching waveform

Figure 5. Diode recovery time waveform

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Table 8. TO-247 mechanical data

Dim.		mm.	
Dilli.	Min.	Тур.	Max.
А	4.85		5.15
A1	2.20		2.60
b	1.0		1.40
b1	2.0		2.40
b2	3.0		3.40
С	0.40		0.80
D	19.85		20.15
E	15.45		15.75
е	5.30	5.45	5.60
L	14.20		14.80
L1	3.70		4.30
L2		18.50	
ØP	3.55		3.65
ØR	4.50		5.50
S	5.30	5.50	5.70

HEAT-SINK PLANE

BACK VIEW 0075325. G

Figure 6. TO-247 drawing

Table 9. TO-3P mechanical data

		mm	
Dim.	Min.	Тур.	Max.
А	4.60		5
A1	1.45	1.50	1.65
A2	1.20	1.40	1.60
b	0.80	1	1.20
b1	1.80		2.20
b2	2.80		3.20
С	0.55	0.60	0.75
D	19.70	19.90	20.10
D1		13.90	
E	15.40		15.80
E1		13.60	
E2		9.60	
е	5.15	5.45	5.75
L	19.50	20	20.50
L1		3.50	
L2	18.20	18.40	18.60
øΡ	3.10		3.30
Q		5	
Q1		3.80	

SEATING PLANE øP -Ε **-** A1 E2 -Q1 D1 L2 L'1*A2* b1(2x) −*b* (3x) _ (2x) 8045950_A

Figure 7. TO-3P drawing

5 Revision history

Table 10. Document revision history

Date	Revision	Changes
12-Mar-2013	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

